44,518 research outputs found

    Engaging with the Dory Fleet: A Panel Discussion on a Collaborative College and Community Oral History Project

    Get PDF
    This peer-reviewed program was presented at the annual Northwest Communication Association Conference in Coeur d’Alene Idaho on April 15, 2016. The presentation features an overview of the Launching through the Surf: The Dory Fleet of Pacific City project and includes detailed notes from each speaker. Special thanks go to Mary Beth Jones and Brenda DeVore Marshall, who served as transcriber and editor for the detailed speaker notes

    Inverse Medea as a Novel Gene Drive System for Local Population Replacement: A Theoretical Analysis

    Get PDF
    One strategy to control mosquito-borne diseases, such as malaria and dengue fever, on a regional scale is to use gene drive systems to spread disease-refractory genes into wild mosquito populations. The development of a synthetic Medea element that has been shown to drive population replacement in laboratory Drosophila populations has provided encouragement for this strategy but has also been greeted with caution over the concern that transgenes may spread into countries without their consent. Here, we propose a novel gene drive system, inverse Medea, which is strong enough to bring about local population replacement but is unable to establish itself beyond an isolated release site. The system consists of 2 genetic components—a zygotic toxin and maternal antidote—which render heterozygous offspring of wild-type mothers unviable. Through population genetic analysis, we show that inverse Medea will only spread when it represents a majority of the alleles in a population. The element is best located on an autosome and will spread to fixation provided any associated fitness costs are dominant and to very high frequency otherwise. We suggest molecular tools that could be used to build the inverse Medea system and discuss its utility for a confined release of transgenic mosquitoes

    Laser phase noise to intensity noise conversion by lowest-order group-velocity dispersion in optical fiber: exact theory

    Get PDF
    An exact result for the spectral density of intensity variations that occur after propagation of ergodic light in a medium having lowest-order-only group-velocity dispersion is obtained and applied to the problem of semiconductor laser phase noise to intensity noise conversion in a single-mode optical fiber. It is shown that the intensity spectrum after propagation formally approaches, for a large laser linewidth or a long (or high-dispersion) fiber, the intensity spectrum of a thermal source having the same line shape as the laser

    Results of the AFRSI Detailed-Environment Test of the 0.035-Scale SSV Pressure-Loads Model 84-0 in the Ames 11X11 Ft. TWT and the Lewis 8X6 Ft. and 10X10 Ft. SWT (OA-310A, B, C), Volume 2

    Get PDF
    In order to support analysis of the STS-6 advanced flexible reusable surface insulation (AFRSI) anomaly, data were obtained for aerodynamic and aeroacoustic environments in affected areas of the orbiter. Data are presented in tabular form
    corecore